Lemma 14.29. \(M[G] \) is a ctm of ZFC.

Proof. We show that \(M[G] \) satisfies each axiom of ZFC.

- Extensionality. Follows easily from transitivity of \(M[G] \).

- Regularity. Trivial.

- Pairing. Let \(x, y \in M[G] \); then there exist \(\tau, \sigma \in M^P \) with \(\tau_G = x \) and \(\sigma_G = y \). Now consider the set \(\delta = \{ \langle \tau, 1 \rangle, \langle \sigma, 1 \rangle \} \). It is easy to see that \(\delta_G = \{ \tau_G, \sigma_G \} = \{ x, y \} \). But note that \(\delta \in M^P \): it is a \(P \)-name by construction, and is in \(M \) since \(M \) is a ctm.

- Union. Suppose \(a \in M[G] \). We wish to show that there is some \(b \in M[G] \) which contains \(\bigcup a \) as a subset (we can then appeal to Separation in \(M[G] \), which we will show later).

Since \(a \in M[G] \), there is some \(\tau \in M^P \) with \(\tau_G = a \). Let \(\pi = \bigcup \text{dom}(\tau) \); this is a set which contains the \(P \)-names of all elements of \(\tau_G \) (and possibly some extra ones whose corresponding conditions are not in \(G \)). \(\pi \in M \) since \(M \) is a ctm; \(\pi \in V^P \) by construction (\(\text{dom}(\tau) \) is a set of \(P \)-names, so \(\bigcup \text{dom}(\tau) \) is a subset of \(V^P \times P \)). Hence \(\pi \in M^P \), so \(\pi_G \in M[G] \).

We claim that \(\bigcup a \subseteq \pi_G \). To see this, let \(c \in a \); then \(c = \sigma_G \) for some \(\sigma \in \text{dom}(\tau) \). Therefore \(\sigma \subseteq \pi \), so \(\sigma_G \subseteq \pi_G \).

- Separation. Let \(\sigma \in M^F \) and let \(\varphi \) be a formula (it may have multiple parameters, but we omit them in the following proof), and define \(c = \{ a \in \sigma_G \mid M[G] \models \varphi[a] \} \).

We wish to show that \(c \in M[G] \), which we will do by finding a suitable \(P \)-name for \(c \).

We claim that a suitable \(P \)-name is \(\rho = \{ \langle \pi, p \rangle \in \text{dom}(\sigma) \times P \mid p \models \varphi[\pi_G] \} \).

We first note that \(\rho \in M \) by separation in \(M \) and definability of \(\models \) (Theorem 14.27); \(\rho \) is clearly a \(P \)-name by construction. Now we must show that \(\rho_G = c \).

- (\(\rho_G \subseteq c \)). Suppose \(x \in \rho_G \), so there is some \(\langle \pi, p \rangle \in \rho \) such that \(x = \pi_G \) and \(p \models \varphi[\pi_G] \). Then by definition of forcing, \(\pi_G \in \sigma_G \) and \(M[G] \models \varphi[\pi_G] \). Hence \(x = \pi_G \in c \) by definition of \(c \).
\(c \subseteq \rho_G \). Suppose \(a \in c \), that is, \(a \in \sigma_G \) and \(M[G] \models \varphi[a] \). Then there is some \(\pi \in M^P \) such that \(\pi_G = a \). So by Truth (Theorem 14.26) we may pick \(p \in G \) such that \(p \models \pi \wedge \varphi(\pi) \). Then \((\pi, p) \in \rho \), so \(a = \pi_G \in \rho_G \).

- Replacement. At this point, we introduce the axiom schema of Collection:

\[
\forall x. \exists y. \forall z \in x. (\exists w. \varphi(z, w) \Rightarrow \exists w \in y. \varphi(z, w)).
\]

Intuitively, this states that we can collect elements in the image of any set \(x \) under any partial relation \(\varphi \) into a set \(y \) (which may also contain other stuff). This implies the axiom schema of Replacement: we may take \(\varphi \) to be a functional relation, and then given a set \(y \) witnessing Collection, we may use Separation to yield a set which is exactly the image \(\varphi[x] \).

It turns out that Collection is also a theorem of ZF, via the reflection principle.

Now suppose we have some \(x = \sigma_G \); we wish to exhibit a \(\rho \) for which

\[
M[G] \models \forall z \in \sigma_G. (\exists w. \varphi(z, w) \Rightarrow \exists w \in \rho_G. \varphi(z, w)).
\]

(2)

Let \(S \in M \) such that

\[
M \models \forall \pi \in \text{dom}(\sigma). \forall p \in P. (\exists \mu. M^P(\mu) \wedge p \models \varphi(\pi, \mu) \Rightarrow (\exists \mu \in S). p \models \varphi(\pi, \mu)).
\]

(3)

It is not \textit{a priori} clear that such an \(S \) exists. If \(M^P \) were a set, we could just take \(S = M^P \), but \(M^P \) may be a proper class. However, such an \(S \) does exist, which we can show as follows (note that in the following, all our reasoning is taking place inside \(M \)). By Reflection in \(M \), there is a closed unbounded class of ordinals \(\alpha \) which simultaneously reflect the two formulae

\[
\exists \mu. M^P(\mu) \wedge p \models \varphi(\pi, \mu)
\]

and

\[
M^P(\mu) \wedge p \models \varphi(\pi, \mu),
\]

that is,

\[
\forall \pi \in \text{dom}(\sigma). \forall p \in P. (\exists \mu. M^P(\mu) \wedge p \models \varphi(\pi, \mu) \Leftrightarrow [\exists \mu. M^P(\mu) \wedge p \models \varphi(\pi, \mu)]^{V_\alpha}),
\]

(3)

and

\[
\forall \pi \in \text{dom}(\sigma). \forall p \in P. \forall \mu. (M^P(\mu) \wedge p \models \varphi(\pi, \mu) \Leftrightarrow [M^P(\mu) \wedge p \models \varphi(\pi, \mu)]^{V_\alpha}).
\]

(4)

So, we may pick such an \(\alpha \) large enough so that \(\text{dom}(\sigma) \in V_\alpha \) and \(P \in V_\alpha \).
We then let $S = MP \cap V_\alpha$, and claim that S has the required property.
Given some $\pi \in \text{dom}(\sigma)$ and $p \in P$, suppose there exists some $\mu \in MP$ for which $p \vDash \varphi(\pi, \mu)$. Then by equation (3) there is some $\mu \in V_\alpha$ which satisfies $[MP(\mu) \land p \vDash \varphi(\pi, \mu)]^{V_\alpha}$; but then by equation (4) μ also satisfies this condition in the universe, so $\mu \in S$ and $p \vDash \varphi(\pi, \mu)$, exactly the required property of S.

Now let $\rho = S \times \{1_P\}$, so $\rho_G = \{\mu_G | \mu \in S\}$ (since G is a filter). Now we must show that ρ satisfies equation (2).

To this end, let $z \in \sigma_G$ and $\varphi^M[G](z, w)$ for some $w \in M[G]$. We must find some $w' \in \rho_G$ for which $\varphi^M[G](z, w')$.

Since $z \in \sigma_G$, $z = \pi_G$ for some $\pi \in \text{dom}(\sigma)$. We know that $M[G] \models \exists w. \varphi(\pi_G, w)$, so there must be some μ for which $M[G] \models \varphi(\pi_G, \mu_G)$. Then by Truth there is some $p \in G$ such that $p \vDash \varphi(\pi, \mu)$. Then by the property of S, there is some $\mu' \in S$ such that $p \vDash \varphi(\pi, \mu')$, and $\mu'_G \in \rho_G$.

Remark. We are not quite done; in the next lecture we will cover Powerset and Choice. But now, a small digression about the axiom schema of Collection.

Definition 14.30. Kripke-Platek set theory is the axiomatic system with Extensionality, Regularity, Pairing, Union, and all Δ_0 instances of Separation and Collection.

Remark. It is easy to see that $V_\omega \models KP$, since it models $ZF - \text{Infinity}$. $KP + \text{Infinity}$ is a nice system, too.

Definition 14.31. An ordinal α is admissible iff $L_\alpha \models KP$.

Remark. Admissible ordinals “are those which support a nice notion of computability.”

Definition 14.32. $R \subseteq \omega \times \omega$ is recursive iff c_R, the characteristic function of R, is Turing-computable. An ordinal α is recursive iff it is the order type of some recursive $R \subseteq \omega \times \omega$.

Definition 14.33. ω^1_{CK}, the Church-Kleene ordinal, is the least non-recursive ordinal.

$(\omega^1_{CK})^f$ is the least non-(recursive)f ordinal, where $f \in \omega \rightarrow 2$ and (recursive)f means Turing-computable given an f-oracle.

Theorem 14.34. If α is a countable ordinal greater than ω, then α is admissible iff $\alpha = (\omega^1_{CK})^f$ for some $f \in \omega \rightarrow 2$.

Remark. The proof is omitted.

We note that ω^1_{CK} is, in fact, the set of all recursive ordinals, so in particular it must be countable (since there are countably many Turing machines).