Remark. We now proceed to prove the generalized continuum hypothesis under the assumption that $V = L$.

Lemma 13.24. For every infinite ordinal α, $\text{card}(L_\alpha) = \text{card}(\alpha)$.

Proof. First, we note that $L_\omega = V_\omega$, and $\text{card}(V_\omega) = \text{card}(\omega) = \omega$. Also, it is clear that $\text{card}(L_\alpha) \geq \text{card}(\alpha)$ since $\alpha \subseteq L_\alpha$.

In the successor case, we want to show that $\text{card}(L_{\alpha+1}) = \text{card}(\text{Def}(L_\alpha)) = \text{card}(\alpha + 1) = \text{card}(\alpha)$. This amounts to showing that Def preserves cardinality. But every element of $\text{Def}(L_\alpha)$ is a formula together with some finite number of witnesses from L_α; hence its size is at most $\aleph_0 \times \sum_{n \in \omega} (\text{card}(L_\alpha))^n = \text{card}(L_\alpha)$. \qed

Definition 13.25. $o(M)$ is the least γ for which $\gamma \notin M$. For transitive M, $o(M) = \{ \gamma \mid \gamma \in M \}$.

Remark. Recall that the GCH says that $2^\kappa = \kappa^+$ for all infinite κ. To show that it holds in L, we must show that every subset of L_κ occurs at some level prior to L_{κ^+}. If we can show that $\text{od}(x) < \kappa^+$ for every $x \leq \kappa$, then $2^\kappa \leq \kappa^+$ (we already know that $2^\kappa \geq \kappa^+$ by Cantor’s Theorem). In particular, we will show that for every $x \subseteq L_\alpha$, $\text{od}(x) < |\alpha|^+$.

Recall that $\alpha \mapsto L_\alpha$ is Δ_1-ZF. So there is some sentence θ for which $\alpha \mapsto L_\alpha$ is Δ_1-θ, that is, θ proves the equivalence of the Σ_1 and Π_1 forms of $\alpha \mapsto L_\alpha$. Given this, we can prove the following lemma.

Lemma 13.26. There is a sentence θ such that $\text{ZF} + (V = L) \vdash \theta$ and for every transitive M,

$$M \models \theta \implies \exists \alpha. \text{lim}(\alpha) \land M = L_\alpha.$$

Proof. Let ψ be the function $\alpha \mapsto L_\alpha$. Then $\psi(\alpha, x)$ is absolute for transitive models of a finite fragment θ' of ZF. Then let

$$\theta = \theta' \land (V = L).$$

If $M \models \theta$, the claim is that $M = L_\alpha$ for some $\text{lim}(\alpha)$.

In particular, we claim that $M = L_{o(M)}$.

- Since $\alpha \mapsto \alpha + 1$ is absolute for M, $o(M)$ must be a limit.

- $L_\alpha \subseteq M$. Since $\text{lim}(\alpha)$, $L_\alpha = \bigcup_{\beta < \alpha} L_\beta$, and $\beta \in M$ for all $\beta < \alpha$. $\psi(\beta, x)$ is absolute for M, so $L_\beta \subseteq M$ for all $\beta < \alpha$. Hence, $\bigcup_{\beta < \alpha} L_\beta \subseteq M$ by transitivity of M.
\[M \subseteq L_\alpha. \] Note that \(M \models V = L \). For \(\beta < \alpha \), \((L_\beta)^M = L_\beta \); hence \(M \subseteq \bigcup_{\beta < \alpha} L_\beta \).

\[\square \]

Theorem 13.27. For every \(x, \alpha \), if \(L(x) \) and \(x \subseteq L_\alpha \) then there is some \(\beta < |\alpha|^+ \) with \(x \in L_\beta \).

Remark. We first remark that this theorem implies the GCH; note that if \(x \subseteq \kappa \) then \(x \subseteq L_\kappa \). This theorem says that every subset of \(L_\alpha \) gets constructed at some stage prior to \(|\alpha|^+ \); hence the set of all such subsets must occur at stage \(|\alpha|^+ \).

Proof. Observe that \(\theta \) is a consequence of \(V = L \). Since \(\theta \) is a single sentence, we can apply the Reflection Principle.

Suppose \(x \subseteq L_\alpha \) and \(L(x) \); hence there is some \(\delta \) with \(x \in L_\delta \). Pick \(\beta > \delta \), \(\beta > \alpha \), \(\lim(\beta) \) from the club class of ordinals reflecting \(\theta \) in \(L \). Hence \(x \in L_\beta \), and we note that \(L_\alpha \subseteq L_\beta \).

Since AC holds in \(L \), by the Löwenheim-Skolem theorem there is some \(N \preceq L_\beta \) such that \(L_\alpha \cup \{x\} \subseteq N \) and \(|N| = \text{card}(\alpha) \); we also note that \(N \models \theta \) since \(N \preceq L_\beta \). Also, observe that \(L_\alpha \cup \{x\} \) is transitive, since \(x \subseteq L_\alpha \). (However, \(N \) might not be transitive.)

But \(N \) is extensional and well-founded, so by the Mostowski collapsing theorem, it is isomorphic to a unique transitive set \(M \), and the isomorphism preserves \(L_\alpha \cup \{x\} \) (the Mostowski isomorphism is the identity on any transitive sets).

Hence \(M \models \theta \) since it is isomorphic to \(N \). So \(M = L_\gamma \), \(\lim(\gamma) \), with \(\alpha < \gamma < |\alpha|^+ \) (\(\alpha < \gamma \) since \(L_\alpha \subseteq L_\gamma \); \(\gamma < |\alpha|^+ \) since \(M \) has cardinality \(\alpha \)).

\[\square \]